美國哈佛大學開發(fā)了一種精準測量超導(dǎo)體的基礎(chǔ)工具。他們創(chuàng)造性地將量子傳感器集成到標準的壓力感應(yīng)設(shè)備中,從而直接讀出加壓材料的電和磁性質(zhì)。
氫在壓力下的表現(xiàn)很奇怪。理論預(yù)測,這種通常是氣態(tài)的元素在100多萬個大氣壓的壓力下,會變成金屬,甚至還會變成超導(dǎo)體??茖W家一直渴望了解超導(dǎo)富氫化合物(稱為氫化物)并最終將其用于實際,包括懸浮列車、粒子探測器等。但是,現(xiàn)有手段很難研究這些材料,想要準確測量更是困難重重。
而哈佛大學團隊開發(fā)的新工具不僅能測量氫化物超導(dǎo)體在高壓下的行為,還能對其成像。
在極端壓力下研究氫化物的標準方法是使用金剛石壓砧儀器,它可在兩個明亮式切割金剛石界面之間擠壓少量材料。為了檢測樣品何時被擠壓到足以超導(dǎo),通常要尋找兩個特征:電阻降至零,以及對附近任何磁場的排斥作用(又名邁納斯效應(yīng))。
想要施加必要的壓力,研究人員必須用一個墊圈將樣品固定住,使擠壓均勻分布,然后將樣品封閉在一個腔室中。但這很難真正觀察到超導(dǎo)電性的雙重特征。
為了解決這個問題,研究人員設(shè)計并測試了一種巧妙的改造方式:他們將一層薄薄的傳感器直接集成到金剛石壓砧的表面上。該傳感器是由金剛石原子晶格中自然產(chǎn)生的缺陷制成的。他們使用這些被稱為氮空位中心的有效量子傳感器,在樣品被加壓并進入超導(dǎo)區(qū)域時,對腔內(nèi)的區(qū)域進行了成像。為證明他們的概念,研究人員使用了氫化鈰,這種材料已知在大約100萬個大氣壓下會成為超導(dǎo)體。
新工具不僅可幫助科學家發(fā)現(xiàn)新的超導(dǎo)氫化物,還可更容易地研究現(xiàn)有超導(dǎo)材料。